动态热机械分析法dma交联密度与核磁法交联密度
动态热机械分析法dma:
热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化。按一定规律设计温度变化,即程序控制温度,故其性质既是温度的函数也是时间的函数。
dma交联密度分析原理:
物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出相应的分析,进而反映交联密度的变化。
核磁法:
核磁法是研究高分子材料中分子动力学的一种非常重要和有效的手段.该技术的一个重要特点是可以通过合理的实验方法,实现对研究体系中从低频(Hz)到中频(kHz)乃至高频(MHz)范围内分子运动的观测.因此.核磁法非常适合研究高分子体系中各类不同尺度分子运动.高分子材料中分子运动与交联密度密切相关,通过分子运动的信息即可反映样品的交联密度。
核磁法交联密度原理:
低场核磁法的主要检测对象是氢核(1H),由于聚合物中不同链段上的H所处的周围环境不一致,H的自旋磁矩(核自旋)存在差异。施加射频脉冲后,自旋系统在恢复热平衡状态的过程中表现出来的弛豫行为不同,通过弛豫时间的差异可以体系聚合物的分子动力学信息。而分子分子动力学信息直接与聚合物的交联密度、老化、填充剂相关。
分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。核磁法利用对应的分析模型来评价材料的交联密度。