玻璃态转化温度测定仪的使用说明
点击次数:2940 更新时间:2020-04-26
玻璃态转化温度测定仪采用模块化设计,在传统的弛豫时间测试设备的基础上,结合了样品控温系统与成像系统,可用于食品、能源、高分子材料等领域的研究,模拟高温环境下,样品的物性变化,获得定性与定量的信息,还可通过核磁共振成像技术实现H质子空间分布的检测。
玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。根据高分子的运动力形式不同,绝大多数聚合物材料通常可处于以下三种物理状态(或称力学状态):玻璃态、高弹态(橡胶态)和粘流态。而玻璃化转变则是高弹态和玻璃态之间的转变,从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它既不是一级相变也不是二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题.玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的自由体积理论和到现在还在不断完善的模态涡合理论及其他众多理论,都只能解决玻璃转变中的某些问题.一个完整的玻璃转变理论仍需要人们作艰苦的努力。